一、AlexNet 模型
1、提出了LRN层,对局部神经元的活动创建竞争机制,使得其中响应比较大的值变得相对更大,并抑制其他反馈较小的神经元,增强了模型的泛化能力。
2、数据增强,随机地从256×256的原始图像中截取224×224大小的区域(以及水平翻转的镜像)。使用了数据增强大大减轻过拟合,提升泛化能力。(进行预测时,则是取图片的四个角加中间共5个位置,并进行左右翻转,一共获得10张图片,对他们进行预测并对10次结果求均值。同时,AlexNet论文中提到了会对图像的RGB数据进行PCA处理,并对主成分做一个标准差为0.1的高斯扰动,增加一些噪声,这个Trick可以让错误率再下降1%。)
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- pqdy.cn 版权所有 赣ICP备2024042791号-6
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务