MANIFOLDS
KYEONGHEEJOANDHYUKKIM
Abstract.Inthispaper,weshowthattheEulercharacteristicofanevendimensionalclosedprojectivelyflatmanifoldisequaltothetotalmeasurewhichisinducedfromaprobabilityBorelmeasureonRPnin-variantundertheholonomyaction,andthendiscussitsconsequencesandapplications.Asanapplication,weshowthattheChern’sconjec-tureistrueforaclosedaffinelyflatmanifoldwhoseholonomygroupactionpermitsaninvariantprobabilityBorelmeasureonRPn;thatis,suchaclosedaffinlyflatmanifoldhasavanishingEulercharacteristic.
1.Introduction
Inthispaper,wewillshowhowtheEulercharacteristicofaprojectivelyflatmanifoldMcanbeviewedasatotalmeasureofMwherethemeasureisinducedfromaprobabilitymeasureonRPninvariantundertheholonomyaction,andthenwewillalsodiscussitsconsequencesandapplications.AprojectivelyflatmanifoldMisamanifoldwhichislocallymodelledontheprojectivespacewithitsnaturalprojectivegeometry,i.e,MadmitsacoverofcoordinatechartsintotheprojectivespaceRPnwhosecoordinatetransitionsareprojectivetransformations.Bycoordinate˜ananalyticcontinuationof
fromM
˜mapsfromitsuniversalcoveringM
,weobtainadevelopingmapintoRPnandthismapisrigidinthesensethatitisdeterminedonlybyalocaldata.ThereforethedecktransformationactiononM
˜inducestheholonomyactionviathedevelopingmapbytherigidity.(Seeforexample[4,14,15]formoredetails.)SupposethereisaprobabilityBorelmeasureλonRPnwhichisinvariantunderthisholonomyaction.ThenwewillfirstshowthataBorelmeasureµonMisinducedfromλbytheinvariancepropertyofλ,andthenshowthefollowingMainTheorem.
Theorem1.1(TheMainTheorem).LetMbeanevendimensionalclosedprojectivelyflatmanifoldandλbeaholonomyinvariantfinitelyadditiveprobabilityBorelmeasureonRPn.Then
χ(M)=µ(M),
whereµistheBorelmeasureonMinducedfromλ.
2KYEONGHEEJOANDHYUKKIM
Thisresultanditsconsequencesaresignificantlyrefinedandevolvedver-sionsofourearlierresults[8,9]initsperspective.OurinvestigationshavebeenmotivatedfromtheefforttoresolvetheChern’sconjecture(oralsoknownasSullivan’sconjecture):“Aclosedaffinelyflatmanifoldhasvanish-ingEulercharacteristic.”
An(X,G)-manifoldisamanifoldwhichislocallymodelledonXwiththegeometrydeterminedbytheLiegroupGactingonXanalytically.Forexample,projectivelyflatmanifoldisaspecialcaseof(X,G)-manifoldwithX=RPnandG=PGL(n+1,R)andsoisanaffinelyflatmanifoldwithX=En,thestandardEuclideanspaceandG=Aff(n),thegroupofaffinetransformationsonEn.Anaffinelyflatmanifoldalsocanbeviewedasaprojectivelyflatmanifoldwhoseholonomypreservesthesetofpointsat
n−1,byidentifyingEnwiththeaffinespacegivenbyxinfinity,RP∞n+1=1
inRn+1sothatRPnbecomesacompactificationofEn.SimilarlyalltheRiemannianandpseudo-Riemannianspaceformscanbeconsideredasasubclassofprojectivelyflatmanifolds,andalsoasubclassofaffinelyflatmanifoldsiftheyareflat.
TheEulercharacteristicofflatRiemannianorpseudo-Riemannianman-ifoldsvanishesbyGauss-Bonnet-CherntheoremanditisnaturaltoaskthesameforaffinelyflatmanifoldsmoregenerallyandthisisthecontentofChern’sconjecture.IfacompactaffinelyflatmanifoldMiscomplete,thentheconjectureistruebytheworkofKostantandSullivan[12],butnotethatthecompactnessdoesnotnecessarilyimplythecompletenessincontrasttotheRiemanniancase.Therehasbeenvariouspartialanswersindifferentdirectionsbuttheconjectureisnotcompletelyresolvedyet.AsoneofthecorollariesoftheMainTheorem,weshowthattheconjectureistrueiftheholonomygroupofaffinelyflatmanifoldhasaninvariantprobabilitymea-suregeneralizingtheearlierresultforamenablecaseaswellasforradiantcaseinaunifiedway.
InSect.2,wewilldefineapull-backmeasuref∗λforagivenlocalhomeo-morphismffromamanifoldMtoanothermanifoldNhavingameasureλ.
˜→X,For(X,G)-manifoldMandthecorrespondingdevelopingmapD:M
˜wheneverXhasameasureλ.IfλisinvariantD∗λiswell-definedonM
underitsholonomyaction,wecanalsodefineameasureµonMnaturally
˜→M.ThisisprovedininducedfromD∗λbycoveringprojectionp:M
Sect.3.InSect.4,wewillprovetheMainTheorem.InSect.5,wewilldiscusstheconsequencesandapplicationsoftheMainTheoremincludingtherelationbetweentheEulercharacteristicandthedevelopingmapsforprojectivelyflatmanifoldsandforementionedresultsforaffinelyflatmani-folds.
2.Pull-backmeasure
Let(N,Ω,λ)denotea(finitelyadditive,resp.)measurespacesuchthattheσ-algebra(algebra,resp.)ΩcontainsalltheopensetsofN,thatis,λisaBorelmeasureifitiscountablyadditive.InthispaperwewillalsocallsuchameasurefinitelyadditiveBorelmeasurewhenλisonlyfinitelyadditive.LetMandNbemanifoldsandf:M→Nbealocalhomeomorphism.Thenwecandefineapull-back(finitelyadditive,resp.)Borelmeasuref∗λ
INV.MEASUREANDTHEEULERCHAR.OFPROJECTIVEMANIFOLDS3
onMwheneversucha(finitelyadditive,resp.)BorelmeasureλisgivenonN.
AnopencoveringB={Bi|
4KYEONGHEEJOANDHYUKKIM
additiveandIisequaltoNifλiscountablyadditive.Thenwehave
∞′
λB(∪i∈ISi)=λf((∪i∈ISi)∩Bk)
====
k=1
∞
k=1∞
′
λ∪i∈If|Bk(Si∩Bk)
λf(Si∩λf(Si∩
′
)Bk
k=1i∈I
∞
′
)Bk
i∈I
i∈Ik=1
λB(Si).
Noticethatthethirdequalityholdssincef|Bkisahomeomorphism.
Lemma2.3.Let{Bi}and{Ci}beadaptedcoveringsand{ΩB,λB}and
{ΩC,λC}bethecorrespondingmeasuresystemsonM.ThenΩB=ΩCandλB=λC.
Proof.(i)ΩB=ΩC:ForeachCkandforalli,f(Ck∩Bi)isopenandthusf(Ck∩Bi)isλ-measurable.HenceCk∈ΩBforallk.SupposeA∈ΩB.ToproveA∈ΩC,itsufficestoshowf(A∩Ci)isλ-measurableforalli.
f(A∩Ci)=f(A∩Ci)∩(∪∞B)k=1k
∞
=f∪k=1(A∩Ci∩Bk)
=∪∞k=1f(A∩Ci∩Bk)
Thelastunionisinfactafiniteunionsince
INV.MEASUREANDTHEEULERCHAR.OFPROJECTIVEMANIFOLDS5
(ii)λB=λC:ForeachA∈ΩB=ΩC,wehave
λB(A)=
∞λk=1f(A∩B′
k)=λf((A∩Bk)∩(∪∞j=1Cj)k
∞=1′′
=λk
∞=1∪∞j=1f(A∩B′k∩Cj
′)=λk
∞=1j∞=1
f(A∩B′
k∩Cj′)=j
∞=1
λ(f(A∩Cj′∩B′k
))k∞=1=
∞λj=1
f(A∩Cj′
)
=λC(A),
wherethefourth,fifthsincethesummationand∞thelastholdevenifλisfinitelyadditivej=1andequalities∞
k=1areinfactfinitesums.FromLemma2.2and2.3,wehavethefollowingtheorem.
Theorem2.1.Letf:M→Nbealocalhomeomorphismandλa(finitelyadditive,resp.)BorelmeasureonN.Thenthereexista(finitelyadditive,resp.)measureµonMsuchthat
(i)everyopensubsetofMismeasurable,(ii)forµ-measurablesubsetAofM(with
Acompact,resp.)ofM.
Proof.TheexistenceofsuchameasureisprovedbyLemma2.2,2.3andthedefinitionofµrespectively.Sotheonlythinglefttoproveistheuniqueness.LetAbeaopensubsetofMand{BandBiareµ′-measurableandµ(A)=kµ′(A∩B′
k)=µ′(∪k(A∩B′k))=µ′i}beanadaptedkµ(A∩B′(A).Noticethat
k)=covering.Thenkλ(f(A∩B′Ak))=sumif
kisinfactafinite6KYEONGHEEJOANDHYUKKIM
Remark2.1.Iffisahomeomorphism,thenf∗Ω=f−1Ωandf∗λ(A)=λ(f(A))forallA∈f∗Ωwhenλiscountablyadditive.Butthisdoesnotholdifλisfinitelyadditive.Infact,id∗λ=λifλisfinitelyadditiveandMisnotcompact.Forexample,ifM=RandλisanyfinitelyadditivetranslationinvariantprobabilitymeasureofR(theamenabilityofRensurestheexistenceofsuchameasure),thenanyboundedmeasurablesubsetofRhasameasure0andthusid∗λ≡0bythedefinitionofid∗λ.Thisstrangephenomenonarisessinceourmeasureid∗λispulledbackonlylocallyandthenisgivenasthesumoftheselocalmeasuresnotreflectingtheglobalnatureoftheoriginalmeasureλ.
Theorem2.2.SupposetopologicalgroupsGandHactcontinuouslyonMandNrespectively.Let(φ,f):(G,M)→(H,N)beanequivariantpairwhereφ:G→Hisahomomorphismandf:M→Nisa∗localhomeomorphism,andλbeanH−invariantBorelmeasure.ThenfλisG−invariant.
Proof.LetAbeameasurablesubsetofMand{Bi}beanadaptedcoveringofM.Thenforeachfixedg∈G,{gBi}isalsoanadaptedf∗
λ(gA)==λf(gA∩(gBi)′)
λf(gA∩gB′coveringofM.
=λi)f(g(A∩B′==λλi))φ(g)f(A∩B′i)f(A∩B′i)
=f∗λ(A)
NoticethefifthequalityholdssinceλisH−invariant.
3.Holonomyinvariantmeasure
LetonM
p:M
→MbearegularcoveringmapandλbeaBorelmeasure.Assumeλisinvariantundertheactionofthedecktransformationgroup.ThenwewilldefineaBorelmeasureµonMsuchthatp∗µ=λ.AnopencoveringB={Bi}i∈NofMwillbecalledacoveringadaptedtocoveringmapp,ifBiisevenlycoveredand
INV.MEASUREANDTHEEULERCHAR.OFPROJECTIVEMANIFOLDS7
Definition3.2.LetB={Bi}beanadaptedcoveringofM.Defineafunction
µB:ΩB→{x∈R:x≥0}∪{+∞}byµB(A)=∞λp|B−1
(A∩B′
k),
k=1
k
whereB′k=Bk\\∪ki=1−1Bi
.ItiseasytoproveB′k∈ΩB
bysimilarargumentasinSect.2.Hence,µBiswelldefinedindependentlyofthechoiceoftheliftingofthedecktransformationgroup.
Bisinceλis
invariantundertheactionLemma3.2.LetB={Bi}beanadaptedcoveringofM.Then(M,ΩB,µB)isa(finitelyadditive)Borelmeasurespace.
Lemma3.3.Letboth{Bi}and{Ci}beadaptedcoveringsofMand{ΩB,µB}and{ΩC,µC}bethecorrespondingmeasuresystemsonM.ThenΩB=ΩCandµB=µC.
FromtheaboveLemmas,wehavethefollowingtheorem.
Theorem3.1.Letp:M
additive,resp.)Borelmeasuredecktransformation→Mbearegularcoveringandλbea(finitelyonM
.Assumethatλisinvariantundertheactionofthegroup.Thenthereexistsa(finitelyadditive,resp.)BorelmeasureµonMsuchthatp∗µ=λ.Furthermoreµisuniqueinthefollowingsense:′ifµ′isanother(finitelyadditive,resp.)Borelmeasuresuchthatp∗µ=λ,thenµ(A)=µ′(A)foreachopensubsetA(with
A
iscompactandthusthefirstandfifthequalitiesalsoholdinthefinitelyadditivecase.Alsothesecondandthirdequalitiesholdsince
8KYEONGHEEJOANDHYUKKIM
Remark3.1.LetAbeasubsetofMsothatAiscontainedinsomeevenlycoveredgeometricchart.Assumethat
2
Sn
fi1···fin−rdλ
Clearly,
λ(sn)=
fn+1dλ
Sn
1···fλ(
snistheantipodalimageofsn.Thenλ(sn)=λ(
INV.MEASUREANDTHEEULERCHAR.OFPROJECTIVEMANIFOLDS9
andholonomygrouprespectively.LetλbeanH-invariantfinitelyadditiveprobabilitymeasureonRPn.Thenforeachfaceσr<σntheangleatσrinσn,denotedbyα˜(σr,σn),isdefinedas
n
α˜(σr,σn)=α(sr0,s0),
nrn˜where(sr0,s0)isadevelopingimageofaliftingofapair(σ,σ)inM.
nNotethatα˜(σr,σn)iswelldefinedbythefollowingreason.α(sr0,s0)is
actuallythemeasureofsomesubsetofRPnandforanyotherchoiceofa
nliftinganditsdevelopingimages1thereexistsh∈Hsothatsn1=h(s0)rnnrrnrandsr1=h(s0).Thereforewegetα(s0,s0)=α(h(s0),h(s0))=α(s1,s1)
sinceλisH-invariant.Buttheangledependsonthedevelopingmap.Fromnowon,we’llsimplydenotetheangleα˜byαbyabusingnotationLet
S(σi)=α(σi,σn),
k(σ)=
andforavertexνinK,let
d(ν)=
n
σi<σn
nr=0
(−1)
r
σr<σn
α(σr,σn),
n(−1)rr=0
Then|Si,j| n−1 ∪∞j=1Si,jiscountableandsoisS=∪i=0Si.Thereforewehavethefollowingproperties: (i)|S|iscountable. (ii)IfXRn+1andXistransversaltoeachelementofS,thenλ([X])= 0. Therefore(i)impliesthatwecanchooseageometrictriangulationKonMbyasmallperturbationsuchthateveryhyperplaneinRPncontainingadevelopingimageofsome(n−1)-dimensionalgeometricsimplexinKistransversaltoSandsoithasameasurezeroby(ii) j}. 10KYEONGHEEJOANDHYUKKIM WenowprovetheMainTheorem:S(σi)=1foranygeometricsimplexσiinKbytheaboveconsiderationandthusd(ν)=0forallvertexν∈K. nnnLetsn0beanydevelopingimageofσ.Thenk(σ)=k(s0)bydefinitionof nnα(σr,σn)andthuswegetk(σn)=k(sn0)=λ(s0).Wemayassumeσis nevenlycoveredandliesinsomegeometricchart,λ(sn0)=µ(σ)byRemark inSect.3.Thereforek(σn)=µ(σn)foralln-simplexσn∈K.NowbythepolyhedralGauss-BonnetTheorem, χ(M)=µ(σn) σn∈K Butwehavechosenatriangulationsothatthefacesofσnhavemeasure zeroandhence µ(σn)=µ(M). σn∈K Thiscompletestheproof. 5.ConsequencesandApplications Therighthandsideµ(M)oftheformulaintheMainTheoremissupposedtodependontheholonomyinvariantmeasurechosenandonthedevelopingmap,namelytheprojectivelyflatstructureofM.Butthetheoremsaysthatinfactitdoesnot,andisalwaysequaltotheEulercharateristicofM,atopologicalinvariant.Futhermore,thereisnoreason,apriori,thatthetotalmeasureofM,µ(M)shouldbeaninteger.Thetopology,geometryandthemeasurerelatedtoMareinterlockedbytheformulaandwecanexpectinterestingapplicationsfromtheseobservations.Wewillseesomeoftheimmediateconsequencesandapplicationsinthissection. LetMbeaclosedprojectivelyflatmanifoldwithamenableholonomygroupHandmaninvariantmeanonB(H),thespaceofallboundedfunctionsonH,see[5]fordefinitionsofamenablegroupandinvariantmean.WemayassumethatmisrightinvariantsinceHisagroup,thatis,m(fs)=m(f)foralls∈H,wherefsisaboundedfunctiononHgivenbyfs(t)=f(ts).ThenwecandefineanH-invariantfinitelyadditiveprob-abilitymeasureonRPnasfollows.Chooseanyprobabilitymeasureλ0onRPn.Thenforanyλ0-measurablesubsetEofRPnwecandefineaboundedfunctionfE:H→[0,1]by(5.1) fE(h)=λ0(h(E))λ(E)=m(fE) forallλ0-measurablesubsetE⊂RPn.Then,bythepropertyofinvariantmean,λisafinitelyadditiveH−invariantprobabilitymeasureonRPn.Moreprecisely, λ(hE)=m(fhE)=m((fE)h)=m(fE)=λ(E) since fhE(h′)=λ0(h′(hE))=λ0(h′h)E)=(fE)(h′h)=(fE)h(h′), andthepropertym(1)=1impliesthatλisafinitelyadditiveprobabilitymeasureonRPn. forallh∈H.NowdefineanewmeasureλonRPnby INV.MEASUREANDTHEEULERCHAR.OFPROJECTIVEMANIFOLDS11 Theorem5.1.LetMbeanevendimensionalclosedprojectivelyflatman-ifoldwithholonomygroupH.SupposethereexistanH-invariantfinitelyadditiveprobabilityBorelmeasureλonRPn.Thenwehavethefollowing. (i)χ(M)isnonnegative. (ii)Ifthedevelopingmapisinjective,thenχ(M)=0. (iii)Ifχ(M)=0,thenthedevelopingmapisnotsurjective. (iv)Iftheinvariantmeasureλiscountablyadditive,thenχ(M)=0if andonlyifλ(Ω)=0andχ(M)>0ifandonlyifλ(Ω)=1,whereΩisthedevelopingimage.Proof.Toprovethistheorem,itsufficestoprove(ii),(iii)and(iv)because(i)istheimmediateconsequenceoftheMainTheorem. ˜.LetD:M˜→RPn(ii)LetFbeanopenfundamentaldomainofMinM bethecorrespondingdevelopingmapandφ:π1(M)→Hbetheho-lonomyrepresentation.Supposeφ(ξ)=idforsomeξ∈π1(M).Then ˜.SinceDisinjective,ξx=xforD(ξx)=φ(ξ)D(x)=D(x)forallx∈M ˜,i.e,ξ=id.Thereforeφbecomesanisomorphism.NotethatHallx∈M isnon-trivial:Ifitweretrivial,MissimplyconnectedandDbecomesahomeomorphismsinceMiscompactandDisaninjectivelocalhomeomor-phism.Butthisisimpossiblesinceπ1(RPn)=Z/2forn≥2.Leth∈Hbeanon-identityelement.ThenbytheinjectivityofD,D(F)∩h(D(F))=∅.Sinceλ(D(F))=λ(h(D(F)))andλ(D(F))+λ(h(D(F)))≤1,theEulercharacteristic,beinganon-negativeinteger,hastobezero. (iii)Letµbetheinducedmeasure.Ifχ(M)=0,thentheMainTheorem ˜)thereexistsanopenimpliesthatµ(M)=0andthusforeachx∈D(M neighborhoodUxofxsuchthatλ(Ux)=0bythedefinitionoftheinduced ˜)hasmeasurezero.Sup-measure.ThereforeanycompactsubsetEinD(M ˜).ButRPniscompactandthusposeDissurjective.ThenRPn=D(M λ(RPn)=0.Thiscontradictsthatλisaprobabilitymeasure. (iv)LetµbetheinducedmeasureonM.χ(M)=0impliesµ(M)=0bytheMainTheoremandthusagainforeachx∈ΩthereexistsanopenneighborhoodUxofxsuchthatλ(Ux)=0bydefinitionoftheinducedmeasure.ThereforeanycompactsubsetEinΩhasmeasurezeroandthusλ(Ω)=0bythecountableadditivityofλ.Theconverseisclear.Thereforeχ(M)>0impliesλ(Ω)=0.Supposeλ(Ωc)=α(α>0).Byconsidering ˜=(1/α)λ|Ωcsupportedonthecomplementofanotherinvariantmeasureλ Ω,wegetχ(M)=0.Thisisacontradiction.Soλ(Ωc)=0Theorem5.1(ii)saysforinstancethattheholonomygroupofevendi-mensionalhyperbolicmanifoldcannothaveafinitelyadditiveinvariantprobabilitymeasure.(Butitdoeshavecomplexinvariantprobabilitymea-sure.)Amuchbroaderclassofconvexprojectivelyflatmanifoldsshouldhavethesameproperty.Andinthiscasetheholonomygroupofsuchmanifoldscannotbeamenablesinceamenabilityenablesonetoconstructaninvari-antprobabilitymeasurestartingfromanyprobabilitymeasurebyaveragingprocess.Butingeneraltheholonomygroupofprojectivelyflatmanifoldisfarfrombeingamenableevenwhenithasaninvariantprobabilitymeasure.ThecaseofamenableholonomygroupisaninterestingspecialcaseandwecanobtainasharperresultasthefollowingTheorem5.2shows. 12KYEONGHEEJOANDHYUKKIM Theorem5.2.LetMbeanevendimensionalclosedprojectivelyflatman-ifoldwithamenableholonomygroup.Thenthefollowingsareequivalent. (i)Thedevelopingmapisnotonto.(ii)χ(M)=0. (iii)ThereexistsfinitelyadditiveinvariantprobabilityBorelmeasureλon RPnsuchthatλ(K)=0foranycompactsubsetKofthedevelopingimage. (iv)ForanyfinitelyadditiveinvariantprobabilityBorelmeasureλon RPn,λ(K)=0wheneverKisacompactsubsetofthedevelopingimage. (v)ThereexistsacountablyadditiveinvariantprobabilityBorelmeasure λonRPnsuchthatλ(Ω)=0,whereΩisthedevelopingimageof˜.M (vi)ForanycountablyadditiveinvariantprobabilityBorelmeasureµ, µ(Ω)=0.Proof.(i)⇒(ii);Letλ0betheDiracmeasureconcentratedatapointx0outsidethedevelopingimage.LetmbeaninvariantmeanonB(H).ThenwecandefineameasureλonRPnbyλ(E)=m(fE)foreachsubsetE⊂RPn,wherefEisdefinedastheequation(5.1).ThenλisaninvariantfinitelyadditiveprobabilitymeasureandforeachsubsetEcontainedinthedevelopingimage,λ(E)=0.Thereforeχ(M)=0bytheMainTheorem.(ii)⇒(i)hasalreadybeenshowninTheorem4.1(iii). Sincetheholonomygroupisamenable,thereexistsafinitelyadditivein-variantprobabilityBorelmeasurebyaveragingandfurthermoretherealsoexistsacountablyadditiveinvariantprobabilityBorelmeasurebycompact-nessofRPn. (ii)⇒(iv),(vi);Supposethatλ1isafinitelyadditiveinvariantprobabilityBorelmeasureonRPnandλ2isacountablyadditiveinvariantprobabilityBorelmeasure.Letµ1andµ2bethecorrespondinginducedmeasureonMrespectively.Thenµ1(M)=µ2(M)=0sinceχ(M)=0.Bythedefinitionoftheinducedmeasure,foreachxinthedevelopingimage,thereexistanopenneighborhoodUxsuchthatλ1(Ux)=λ2(Ux)=0.Thereforeλi(K)=0(i=1,2)foranycompactsubsetKofthedevelopingimageandfuthermoreλ2(Ω)=0sinceλ2iscountablyadditive. (iv)⇒(iii)and(vi)⇒(v)aretruesincetheholonomygroupisamenable.(iii)and(v)eachimply(ii)bytheMainTheorem.AnotherinterestingspecialcaseinwhichtheexistenceofH-invariantprobabilitymeasureisguaranteediswheretheholonomygroupHhasafixedpointormoregenerallyhasafiniteorbit.Inthiscase,wehavethefollowingtheorem. Theorem5.3.LetMbeanevendimensionalclosedprojectivelyflatman-ifoldwithholonomygroupH.SupposeHhasafiniteinvariantsetI.Thenwehavethefollowings: ˜)ifandonlyifχ(M)>0.(i)I⊂D(M ˜)=∅ifandonlyifχ(M)=0.(ii)I∩D(M Inparticular,ifHhasafixedpointoutsidethedevelopingimage,thentheEulercharacteristicofMmustvanish. INV.MEASUREANDTHEEULERCHAR.OFPROJECTIVEMANIFOLDS13 Proof.DefineaninvariantprobabilityBorelmeasureλonRPnbyλ(E)=1 a∈E∩I λ(I1)λ|I1 andλ2= 1 Hiscompactor(ii)thereisapropersubspaceV0suchthatλ[V0]>0andV0isinvariantbyasubgroup 14KYEONGHEEJOANDHYUKKIM ofHwithfiniteindex.Anaffinelyflatmanifoldalsocanbeviewedasa(Sn,P+GL(n+1,R))manifold,whereP+GL(n+1,R)∼=GL(n+1,R)/R+.LetSL±(n+1,R)={A∈GL(n+1,R)|detA=±1}.ThenP+GL(n+1,R)∼=±SL(n+1,R).NoticethatPGL(n+1,R)∼=SL(n+1,R)ifniseven.Let ±q:SL(n+1,R)→PGL(n+1,R)bethecoveringhomomorphismand ˜→RPnbethep:Sn→RPnbetheusualcoveringmap.LetD:M ˜:M˜→SnbeitsliftingsothatD˜◦p=D.LetH˜⊂developingmapandD ˜sothatitistheP+GL(n+1,R)betheholonomygroupcorrespondingtoD liftingofH.IfH)iscompactinGL(n+1,R)sinceSL±(n+1,R)isclosed.Thereforethereexistsq−1( H′iscompactorthereexistaproper subspaceWofV0suchthatλ[W]>0and[W]isinvariantbyasubgroupofH′withfiniteindex.ButbyminimalityofV0, H′)iscompactinGL(m,R)wherem=dimV0.Sothereexists aq−1( INV.MEASUREANDTHEEULERCHAR.OFPROJECTIVEMANIFOLDS15 PropositionA.1.LetµfbeafinitelyadditiveprobabilityBorelmeasureonacompactHausdorffspaceX.ThenthereexistsacountablyadditiveprobabilityBorelmeasureµconX,whichcorrespondstothemeasureµf.Proof.LetB(X,Σ)betheBanachspaceconsistingofalluniformlimitsoffinitelinearcombinationofcharacteristicfunctionsofsetsinBorelalgebraΣ.ThenthedualspaceofB(X,Σ)isisometricallyisomorphictotheBanachspaceba(X,Σ)consistingofallboundedfinitelyadditivemeasuresonΣ(SeeTheoremIV.5.1in[1]).Inthiscorrespondence,aprobabilitymeasureµfinba(X,Σ)correspondstoapositivelinearfunctionalΛµfonB(X,Σ)andΛµf(χX)=1forthecharacteristicfunctionχX∈B(X,Σ).SinceΣistheBorelalgebraonXandB(X,Σ)iscompletewithrespecttothesupremumnorm,theBanachspaceC(X)consistingofallcontinuousfunctionsoncom-pactspaceXisaBanachsubspaceofB(X,Σ).SotherestrictionΛµf|C(X)ofΛµfisapositivelinearfunctionalonC(X)withΛµf|C(X)(χX)=1sinceχX∈C(X).Consequently,wehaveacountablyadditiveprobabilityBorelmeasureµconXcorrespondingtoΛµf|C(X)bytheRieszRepresentationTheorem.Thiscompletestheproof.RemarkA.1.Thiscorrespondencedoesnotimplythatµf(E)=µc(E)forallsubsetEofXwhichiscontainedintheBorelalgebra.Forexample,considerafinitelyadditivetranslationinvariantprobabilityBorelmeasureµf.Infact,µfcanberegardedasafinitelyadditiveprobabilityBorelmeasureontheclosedinterval[−∞,+∞],thecompactificationofR1,suchthatµf({−∞})=µf({+∞})=0.Butforthecorrespondingcountablyadditiveprobabilitymeasureµc,µc({−∞,+∞})=1.Infactµf(I)=0foranyboundedintervalI⊂Randthisimpliesthatµc(R)=0usingtheMonotoneConvergenceTheorem. PropositionA.2.LetthegroupGactonacompactmetricspaceXandµfbeaG-invariantfinitelyadditiveBorelmeasureonX.ThenthecountablyadditiveprobabilitymeasureµcwhichcorrespondstoµfisalsoG-invariant.Proof.G-invarianceofµfimpliesthatµf(E)=µf(gE)forallmeasurable Eandg∈Ganditfollowsthatfdµf=g·fdµfforanyf∈C(X)−1where(g·f)(x)=f(gx).Sinceµf=µconC(X),fdµc=g·fdµcforanyf∈C(X),whichinturnimpliesthat µc(E)=χEdµc=g−1·χEdµc=χgEdµc=µc(gE)forallmeasurableEandg∈GbytheMonotoneConvergenceTheorem. References [1]N.DunfordandJ.T.Schwartz,LinearOperators,PartI(IntersciencePublishers(NewYork),1958)258. [2]D.Fried,Closedsimilaritymanifolds,Comment.Math.Helv.55,(1980)576–582.[3]D.Fried,W.GoldmanandM.Hirsch,Affinemanifoldswithnilpotentholonomy,Comm.Math.Helv.56,(1981)487–523. [4]W.M.Goldman,Geometricstructuresonmanifoldsandvarietiesofrepresentations,Contemp.Math.74,(1988)169–198. [5]F.P.Greenleaf,Invariantmeansontopologicalgroupsandtheirapplications(VanNostrandMath.Studies#16,1969). 16KYEONGHEEJOANDHYUKKIM [6]M.W.HirschandW.P.Thurston,Foliatedbundles,invariantmeasuresandflatmanifolds,Ann.ofMath.(1975)369–390. [7]H.Hopf,DifferentialGeometryintheLarge,LecturenotesinMath.1000(Springer,Berlin1983). [8]H.KimandH.Lee,TheEulercharacteristicofacertainclassofprojectivelyflatmanifolds,TopologyAppl.40,(1991)195–201. [9]H.KimandH.Lee,TheEulercharacteristicofprojectivelyflatmanifoldswithamenablefundamentalgroups,Proc.Amer.Math.Soc.118,(1993)311–315. [10]H.Kim,APolyhedralGauss-Bonnetformulaandprojectivelyflatmanifolds,Proceed-ingsoftheinternationalconferenceonpureandappliedMath.(BeijingandYanji,1992)71–81. [11]S.Kobayashi,Invariantdistancesforprojectivestructures,Ist.Naz.AltaMat.Symp.Math.26,(1982)153–161. [12]B.KostantandD.Sullivan,TheEulercharacteristicofacompactaffinespaceformiszero,Bull.Amer.Math.Soc.81,(1975)937–938. [13]J.Milnor,Onfundamentalgroupsofcompleteaffinelyflatmanifolds,Adv.inMath.25,(1977)178–187. [14]T.NaganoandK.Yagi,Theaffinestructuresontherealtwo-torus,OsakaJ.Math.11,(1974)181–210. [15]W.P.Thurston,Thegeometryandtopologyof3-manifolds,Preprint(1977). [16]R.J.Zimmer,Ergodictheoryandsemisimplegroups,MonographsinMathematics.81(Birkh¨auser,Boston1984).SchoolofMathematicalScience,SeoulNationalUniversity,151-742Seoul,KOREA E-mailaddress:khjo@math.snu.ac.krE-mailaddress:hyukkim@math.snu.ac.kr 因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- pqdy.cn 版权所有 赣ICP备2024042791号-6
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务